
Securing DevOps,
RMF and STIG
Scott Snowden
Sameer Kamani

May 2017 – San Diego Federal Fortify Users Group

DevOps – definition and principles

2

DevOps (a clipped compound of development and operations) is a practice that emphasizes the

collaboration and communication of both software developers and other information-technology (IT)

professionals while automating the process of software delivery and infrastructure changes.

Principles

• Develop and test in an environment similar to production

• Deploy builds frequently

• Validate quality continuously

Shorter release cycles

Developers
need to move
at the speed
of business
innovation

3

2010
4 per app

2015
36 per app

2020
120 per app

Steady Stream of Improvement
Thanks to consumerization, users now expect continuous

improvements to apps rather than the traditional annual mega-updates

Traditional Static software scanning process

Fortify SSC

Developers

Auditor /Security

Build / Scan
Static Code Analysis

(SCA)

Code

Repository

Check in Code

Scheduled Check-out,

Build and Scan

Upload

Scan

Results

Auditor

Reviews Results

Submit

Findings to Bug

Tracker

Developer Fixes

Bug / Security

Finding

Repeat as

Necessary

.fpr file

Scan Fix

4

Bug

Tracking

New Static software scanning process

Fortify SSC

Developers

Auditor /Security

Build / Scan
Static Code Analysis

(SCA)

Code

Repository

Check in Code

Scheduled Check-out,

Build and Scan

Upload

Scan

Results

Auditor

Reviews Results

Submit

Findings to Bug

Tracker

Developer Fixes

Bug / Security

Finding

Scan Fix

5

Bug

Tracking

Application Security Testing Challenges
Static Analysis

– Lengthy / Memory Intensive Scans for Large Applications

– Complex build processes can make integrations difficult for the security team

– Frequency of builds compounds the problem

– Large # of raw static findings that require human auditing to validate (this is #1)

– Organizational priority / risk tolerance needs to be applied to validated findings

– Managed service findings require prioritization as well

– Communication of findings to developers

– Communication of metrics / KPIs to management

6

Static Analysis Solution – Lengthy / Memory Intensive Scans

– Take advantage of multiple cores / processors / cloud

– New in 17.10, use –mt flag for multi-threading

– Offload the scan from the build server to a dedicated scanning server

– Mobile build or Cloudscan (Distributed scanning)

– Create scalable static scanning solutions

– Reduce the frequency of scans if necessary (determine how often meaningful changes to the code base
are checked in)

– Integrate into Build environment and embed appropriately

– Large enterprise applications should sometimes be broken up into logical modules based upon data flow

– Bite-sized scanning

– Take advantage of lightweight static security scans early in the dev lifecycle

– Incremental scanning

7

Multi-Threading scans

Why?

– Speed up scans

– Utilize full potential of the available
resources with native java
management

What?

– Significantly decrease the scan
time.

– Support Agile/DevOps ecosystem.

How?

– Simply add the –mt flag to your
command line scans

8

Incremental static analysis

Why?

– Customers are moving towards
continuous integration and
continuous builds making it
difficult/impossible to always
perform a full scan.

– Software is large and complex. Full
scans take too long.

– Organizations are moving to
Agile/DevOps tool chains and need
scanning to fit in.

What?

– Significantly decrease the scan
time.

– Support Agile/DevOps ecosystem.

How?

– Full scan to establish baseline.

– Subsequent scans can enable
incremental mode.

– Incremental scans only assesses
what has changed since last
assessment.

– User can provide full source or
subset of source. SCA will
determine what has changed.

– SCA will measure the health of the
incremental scans and recommend
another full scan when needed.

9

Static Analysis Solution – Complex Builds

– The app sec team must work with / have access to developers / build engineers when automating / ensure
it compiles before you get started

– Provide static integration examples on a internal wiki in addition to normal tool documentation to allow dev
teams to be proactive

– Consider a centralized scanning solution outside of the build process if the integration and maintenance of
build / security scripts becomes too much

10

Static Analysis Solution – Build Frequency

– When building / scanning multiple times a day as a part of your CI process,
ensure your storage solution is scalable

– Reasonable data retention policy should be applied to scanning result files

– How valuable are these three year old scans?

– Automated merging of new scans with previous scans is a requirement to
preserve previous audit decisions / trending

11

Static Analysis Solution – Triaging Static Findings

– Security cannot be responsible for auditing static findings if they
do not have the appropriate development background

– Filling out exception paperwork filled with unimportant findings is a
waste of everyone’s time

– Development has to be accountable for acceptable
organizational risk as they may be the auditor in many DevOps
scenarios

– Vulnerability training needs to be available and current

12

This is the main blocker of effective static security scans moving at a high speed

The quickest way to derail static testing is to push garbage findings to the dev team

Static Analysis Solution – Triaging Static Findings (continued)

– When auditing: Sort by common sources and sinks for dataflow issues

– Apply audit knowledge from past decisions

– Start with a targeted list of vulnerabilities and expand that list as your program matures

– Make previously audited scan files available to anyone responsible for auditing

– Audit peer review

– Future: Machine learning to apply past audit decisions to predict future audit decisions

13

Source

Not an Issue

Crit ical

High

Medium

Low

Source
Static Code Analysis

Source
Source

Source

Static Code Analysis
Static Code Analysis

Static Code Analysis
Static Code Analysis

Static Code AnalysisSource

Security
auditor

Static Analysis Solution – Remediation

– It’s time to fix something!

– You need to define effective security controls that work
for your organizations specific technology stack

– Talk to a software architect (if s/he is friendly)

– Not every fix is created equally

– Automate these recommendation via security controls that are
language / technology specific

– Internal security libraries for common languages can be very
helpful

0

200

400

600

800

1000

1200

Release 0 Release 1 Release 2 Release 3

Sec. Vulns. Remediated

14

Static Analysis Solution – Communication

– Don’t make the developers go to a separate portal if they already have a bug tracking solution

– Do automate batch bug submission of security defects once findings are validated

– Don’t submit bugs for unaudited findings

– Don’t submit duplicate bugs

– Don’t break builds for every unaudited static finding

– Understand your specific static analysis tools confidence thresholds and use that for automation

– Do mark builds as unstable / break if critical high confidence findings are flagged during a build

– Requires a baseline scan of that application and audit to establish

– Understand what defect tracking solutions exist in your organization and understand the work involved to
support them effectively, or decide not to and provide an alternative for security defects

15

Static Analysis Solution – Metrics

– I have never worked as on-site app sec SME where I didn’t have to provide tailored regular metrics to
leadership

– When starting a security program, positive trending metrics of certain groups make adoption easier
throughout the organization

– Automate reporting and upload to src repo as they are a required artifact

– Tailor reports / dashboard to your organizations specific needs

– Take advantage of other tools that may be available (GRC, etc)

16

Integrate
Securing DevOps through the Fortify Ecosystem integrations and automation

Fortify
solutions

REST APIs with Swagger

REST APIs with Swagger

DevOps &
third party

Requirements &

issues

- ALM Octane

- JIRA

- Bugzilla

Build servers

- Jenkins

- Bamboo

- VSTS/TFS

Build tools

- Gradle

- ANT

- Maven

Security

- Vuln Mgmt

- SIEM

- WAFs

IDEs

- Eclipse

- Visual Studio

- IntelliJ

- Xcode/AS

Open Source

- Sonatype

- Black Duck

- Fortify Open

Rev.

Configuration

automation

- Chef

- Puppet

- Octopus

Containers

- Docker

- ‘Dockerized

Security’

Cloud

- Azure

- AWS

DevOps &
third party

C
o

m
m

u
n

ic
a

tio
n

/C
h

a
tO

p
s

Code repositories

& apps

- HPE LiveNet

- GitHub

- SVN

Secure

Development

Security

Testing

Continuous

Monitoring

and Protection

Requirements &

issues

- ALM Octane

- JIRA

- Bugzilla

Build servers

- Jenkins

- Bamboo

- VSTS/TFS

Build tools

- Gradle

- ANT

- Maven

IDEs

- Eclipse

- Visual Studio

- IntelliJ

- Xcode/AS

Open Source

- Sonatype

- Black Duck

- Fortify Open

Review

Configuration

automation

- Chef

- Puppet

- Octopus

Containers

- Docker

- Mesosphere

- ‘Dockerized

Security’

Cloud

- Azure

- AWS

C
o

m
m

u
n

ic
a

tio
n

/C
h

a
tO

p
s

Code repositories

& apps

- HPE LiveNet

- GitHub

- Bitbucket

Security

- Vuln Mgmt

- SIEM

- WAFs

17

Effective / High Velocity DevSecOps - Example

18

Developer

Source Code Mgmt System

Defect Mgmt System

Vulnerability Mngt Platform

Lead Developer New / Critical

Issues Exist Alert

1

2
3

4

5

IDE Security Plugin

Local Remediation Scan

Light Weight Static Scan

Repair MY

Issues

6

8 Check in Secure Code

Security

Analysis

Prerequisites:

1) Base line scan / audit

performed

2) Confidence threshold defined

3) Audit Filters or Rules from

previous scans applied via

vuln mngt platform Static Scan

Servers Cluster

Translated

Files sent to

available scan

server

Upload New

Scan Merged

with Existing

Triage &

Assign to Defect

Tracking System

Developer is sent ticket with

embedded link to issues

7

Build /

Translation Job

Demo
This was a live demonstration of using Jenkins to perform a build and scan
of code automatically. It was configured such that the build would be
marked unstable if a Critical or High Fortify finding was found in the FPR
file.

For more information please contact your Fortify Representative.

19

RMF and Fortify

20

What is RMF?

– The Risk Management Framework (RMF) for DoD
Information Technology (IT) (DoDI 8510.01)

– “Formalizes set of standards and used by DoD agencies to
ensure that the security posture of a given system is
acceptable and is maintained throughout it’s lifecycle.”

– 6 Step approach used for the Authorization of Federal IT
Systems.

21

Risk
Management
Framework

Security
Lifecycle

Categorize

Select

Implement

Assess

Authorize

Monitor

Type of tests

– Controls Assessment

– NIST 800-53A

– STIG/SRG/DON/USMC Policy

– Manual

– Benchmark

– SCAP

– Vulnerability Scans

22

Application Security compliance requirements change
DISA Application Security and Development STIG V4

AppStig provides “principles and guidelines” for with DoD cybersecurity policies, standards, architectures,
security controls, and validation procedures. New in 4.x is mapping of Stig controls to NIST 800-53 rev4
controls through control correlation identifiers (CCI)

Increasing requirements

The number of controls has gone from 158 to 290.

Includes both quality and security issues

Required Validation

Dynamic: APSC-DV-001460 CAT II, titled “An application vulnerability assessment must be conducted.”

Static: APSC-DV-003170 CAT II, titled “An application code review must be performed on the application.”

23

Fortify for RMF/STIG

– RMF refers to NIST’s categorizations

– STIG checks form the bulk of the compliance testing that will be done as part of the RMF process.

– Accounts for >50% of the testing involved in a typical system.

– Application STIG is mapped to NIST’s categorizations through Control Correlation Identifier (CCI)

– Fortify (SCA, SSC, WebInspect and Application Defender) map directly to NIST 800-53R4 and STIG 4.x

24

Automation is your new best friend

– New Requirements

– Additional controls in the new STIG

– Need to map to CCI

– Generate and Manage POA&Ms

– Solutions

– Automate build and scan process

– Use Audit Assistant, Application Defender and other innovative technologies.

– Use APIs to automate processes

– Use specific additional tools that have integrated with Fortify to generate and manage POA&Ms

– PAGE tool – Developed for Navy/USMC use

25

PAGE Overview
Plan Of Action & Milestone (POA&M) Automated Generation Engine

Description

– Maintained by NSWC Crane Tactical Cyber Innovation
Team (TaCIT)

– Supports: ACAS, SCAP, STIG and Fortify

– Provides detailed information needed for remediation

Capabilities

– Directly transform scan results files into POA&M
documents in DoD standard format

– See results info all in one place

– Keep living documents, with in-place updates

– Reduce turnaround time for POA&M documents

26

Sample PAGE Output
Microsoft Excel file

27

PAGE Turnaround

– Manually creating POA&Ms with 5K findings took, on average, ~40 hours

– Human error, bad copy/paste, etc.

– Creating POA&Ms with PAGE with 5k findings takes, on average, ~2 minutes

– Proper formatting, findings deduplicated

28

Thank you

– Remove barriers to implementing security in software application development by better integration

– Use tools designed for STIG and RMF purposes

The agility you need with the results you want

29

