
Business white paper

Getting grounded
with DevOps
An introduction to DevOps

Business white paperBusiness white paper

Table of contents

3		 Why reading this guide is time well spent

3		 Getting grounded—what is DevOps?

4		 The story of DevOps. How it began.

5		 Who’s taking advantage of DevOps?

5		 Common misconceptions about the DevOps community

7		 The DevOps cycle

8		 Expected outcomes from DevOps

9		 Dispelling common myths

10		 Tools in your toolbox

11		 Hewlett Packard Enterprise and DevOps

12		 Glossary

16		 Open source tools for automation, configuration management, and continuous integration

Why reading this guide is time well spent

DevOps is not a new phenomenon, so why is it attracting so much attention now? The answer
is in how the market is changing. Forrester reports they are seeing organizations go from four
application releases per year in 2010 to 120 releases per year by 2020.1 This is a 30X increase.
As organizations adapt to this pace of business, many struggle with the learning curve of truly
understanding what DevOps is all about.

As you read this guide, you’ll learn the truth about DevOps and discover the benefits
DevOps offers your organization. This introductory guide also explains how the DevOps
movement supports the demands for today’s IT—characterized by new types of applications,
new approaches to IT operations, new demands and uses for insight, and new threats and
risks. This quickly evolving business environment also brings with it new customers, buying
behaviors, and IT consumption models.

Getting grounded—what is DevOps?

DevOps is best defined as a philosophy or ideology. It is not a job title, nor a specific toolset,
nor a marketplace. Many of the underlying principles and language of the DevOps philosophy
are grounded in a combination of agile software development plus Kaizen, Lean Manufacturing,
and Six Sigma methodologies. Even if you are more technically inclined, the relevance of these
methodologies will be apparent as you read on.

Embracing a DevOps philosophy means adopting an ideology that fosters a highly productive
culture of collaboration between your development (Dev) and operations (Ops) teams. The
common goal of DevOps is to remove friction, risk, and other constraints to enable faster, more
successful application production rollouts, as often and as rapidly as the business requires.

Most companies that implement DevOps methods today still have a development team and an
operations team in place. You can think of DevOps as the processes and individuals that build
the bridges between these teams to improve the business and enhance the end-customer
experience. Various tools and platforms facilitate the work of DevOps, but they do not define it.
Organizations that embrace DevOps might have all IT resources within a traditional data center,
all resources in an offsite cloud, or distribute their resources in a hybrid environment.

The DevOps movement is not defined nor led by traditional IT software, hardware, or
management vendors. In addition, there are currently no codified rules or manuals for DevOps,
only generally accepted guidelines. With that said, adoption and implementation of DevOps
vary greatly from one organization to the next.

The learnings of DevOps are primarily evangelized by a passionate grassroots community of
IT practitioners, spread across a wide variety of IT disciplines. Most members of the DevOps
community have active jobs within various organizations, and they share their learnings in
numerous online and in-person forums and gatherings. Depending on the number and maturity
of the practitioners in an organization, the benefits of a DevOps implementation are significant,
as shown in the next page.

Business white paper Page 3

Dev plus Ops is equal to
the streamlined flow of
work to deliver faster,
higher-quality software,
with less risk.

1 �“Better outcomes, faster results. Continuous delivery
and the race for better business performance,”
Forrester Thought Leader Paper commissioned
by HP (now Hewlett Packard Enterprise),
December 2013.

https://ssl.www8.hp.com/us/en/ssl/leadgen/secure_document.html?objid=4AA5-1119ENW&siebelid=7404§ionid=pdf&returnurl=%2Fus%2Fen%2Fsecure%2Fpdf%2F4aa5-1119enw.pdf&subbu=TSG.Software&simpletitle=ALM%20pillar%20page&parentUrl=https%3A%2F%2Fwww.google.com%2F
https://ssl.www8.hp.com/us/en/ssl/leadgen/secure_document.html?objid=4AA5-1119ENW&siebelid=7404§ionid=pdf&returnurl=%2Fus%2Fen%2Fsecure%2Fpdf%2F4aa5-1119enw.pdf&subbu=TSG.Software&simpletitle=ALM%20pillar%20page&parentUrl=https%3A%2F%2Fwww.google.com%2F

The story of DevOps. How it began.

In the mid-2000s, numerous conversations began between IT operators and developers.
One can only imagine the dynamics of these conversations. Historically, the relationship
between these two groups has often been challenging—with each group having specific
goals to achieve, and frequently feeling the other was a roadblock. However, discussions soon
centered on a core issue that was becoming more prevalent across a growing number and
variety of IT organizations: How do we bridge the gap between development and operations
for the betterment of the business?

One of the early conversations was between Patrick Dubois and Andrew Shaffer, IT
professionals, at the Velocity Conference 2008. The result of that interaction was one
of the first communities discussing this issue—the Agile Systems Administration Group.
This community and subsequent conversations led Dubois to create the first Velocity
Conference (held in Belgium in October 2008), which he named “DevOps Days.” Thus, the
DevOps name and movement were born.2

One of the best synopses of the origins of DevOps is narrated by Damon Edwards, founder
of DTO Solutions in “The History of DevOps.”3 Click here to watch an informative video.

The DevOps community was largely underground until 2011, when analysts at Gartner and
RedMonk became interested in the topic. Shortly thereafter, enterprise companies began
to show growing interest in DevOps. As the DevOps community expanded, it spawned the
development of myriad tools—including Vagrant, Rundeck, Puppet, Chef, Juju, Logstash, and
many more—designed to help DevOps accomplish its goals. (For more information, refer to the
“Tools in your toolbox” section of this document.) And this range of tools the community uses
continues to expand and grow. These tools have not yet been consolidated or codified into
traditional best practices, but this will most likely occur over time.

Due to the early age of the movement, DevOps is not fully established and still prides itself in
being loosely defined. Documenting DevOps practices has begun, but no clear documentation
of the community has been consolidated into standard best practices. This means that each
operational team applies the DevOps practices according to organizational needs. Doing so
allows people to serve many different roles, but can lead to confusion when trying to implement
a DevOps culture in a traditional operational environment.

Business white paper Page 4

The term “DevOps” typically refers to the emerging professional movement
that advocates a collaborative working relationship between development
and IT operations, resulting in the fast flow of planned work (i.e., high deploy
rates) while simultaneously increasing the reliability, stability, resilience, and
security of the production environment.4

2 The Agile Admin, “What is DevOps?”

3 Damon Edwards, “The History of DevOps”

4 Source: Gene Kim

http://youtu.be/o7-IuYS0iSE
http://www.theagileadmin.com/what-is-devops/
http://www.itrevolution.com/the-history-of-devops/
http://itrevolution.com/pdf/Top11ThingsToKnowAboutDevOps.pdf

Who’s taking advantage of DevOps?

DevOps was originally considered a methodology found only in large Web-based companies
(e.g., Netflix, Google™, etc.) and startups. Within the DevOps community, these types of
organizations are often referred to as “cloud-natives,” “born in the cloud,” or “unicorns.”
Increasingly, large traditional enterprises are embracing DevOps principles to become more
agile so they can better address market needs and compete. When this report was written,
38 percent of large enterprises have implemented DevOps practices in some way.5

Today, the implementation of DevOps can be found in three significantly different groups of
adopters, all challenged by the rapidly increasing pace of application releases:

1.	Daily to monthly releases—Early practitioners of agile software development
methodologies who seek to accelerate delivery and deployment to match the rapid pace
of software creation. The typical release pace in these organizations ranges from daily to
monthly. A typical goal of early practitioners is to eliminate development work-in-progress
delays caused by testing and operational release wait times.

2.	Multiple daily releases—Web-scale practitioners, who adopt DevOps to achieve many micro
releases in a day for an application or run-time service. In these environments, the rapid
update and release of code is tied to new features that are critical to meeting ever-evolving
customer expectations and competitive threats, as well as to the imperative to continuously
experiment and improve.

3.	Structured releases—Traditional IT organizations operating in well-established (and often
regulated) industries, such as finance have structured release practices. They are now turning
to DevOps methodologies not only for greater speed, but also for improved quality and risk
mitigation. In this group of adopters, the current release pace might be considerably slower
than in the other two, but demands for more frequent releases or more efficient releases at
the appropriate level of quality and security still exist.

All three groups share a common goal: eliminating the time and resource constraints of
application delivery, while ensuring the quality, stability, and continuous improvement of their
releases and the experience for their end users. The primary differences between the groups
are driven by the frequency and scale of application releases, usually based on the industry and
nature of the service delivered.

Common misconceptions about the DevOps community

While every organization will implement DevOps in different ways, there are some consistent
characteristics and drivers that make this unique group of individuals tick.

1. Is DevOps a job title?
The short answer is, “No.” As DevOps involves collaborating between various groups, DevOps
employees can work in a number of different areas. In fact, DevOps is embraced and driven by
practitioners and evangelists who hold a variety of job titles. Even so, many companies assign
“DevOps” titles to employees, such as DevOps Engineer, DevOps Security Engineer, and others.

2. How do DevOps practitioners think?
Evangelists and enablers of DevOps methods are typically senior operations analysts,
developers, architects, and most often, senior generalists with a broad understanding
across multiple disciplines. Based on the increasing system complexity these individuals
have witnessed, they have embraced a continuous improvement mentality. These people
have adopted new tools that enable them to optimize processes and systems. At their core,
employees facilitating DevOps methodologies are problem solvers who want to find the fastest
path to high-quality output.

Business white paper Page 5

5 �“Enterprise understanding of DevOps
grows, but key benefits prove elusive,”
Cloud Services World, January 2015

http://www.cloudservices-world.info/news_full.php?id=36676&title=Enterprise-understanding-of-DevOps-grows,-but-key-benefits-prove-elusive
http://www.cloudservices-world.info/news_full.php?id=36676&title=Enterprise-understanding-of-DevOps-grows,-but-key-benefits-prove-elusive

3. How do DevOps practitioners like to work?
These professionals are tool savvy; they use tools and the information the tools provide to
enable continuous delivery of system improvements. These people are data-and-information-
driven, which allows for data-based improvements in operations and development procedures.
In addition, these professionals bring together groups to help achieve standard optimization of
processes and systems. IT organizations with high levels of employee satisfaction often include
large numbers of DevOps practitioners. Inversely, DevOps practitioners often flee from highly
political or bureaucratic command and control environments.

4. What motivates DevOps practitioners?
DevOps practitioners are action takers and problem solvers who want to work with like-minded
people to create meaningful value for their organization, as well as for customers, citizens,
employees, and the work-life environment. These individuals contribute to successful outcomes by:

•	Removing bottlenecks and friction in processes and systems

•	Driving toward faster resolution of business problems

•	Driving ever-increasing customer satisfaction, quality, and outcomes

•	Using data to drive continuous improvement

•	Facilitating continuous experimentation and learning

•	Enabling collaboration between teams to achieve common goals

5. What worries DevOps practitioners?
DevOps concerns vary, based on the maturity of the IT environment. For example, in an immature
environment, implementing a DevOps culture commonly includes the following concerns:

•	Removing the barriers between developers and operations

•	Deploying code multiple times a day (such as for Facebook or Amazon) without impacting the
user experience

•	Working with operations to homogenize the data center hardware

•	Standardizing management tools throughout enterprise

•	Working with developers to simplify the software architecture

•	Minimizing deployment failures and the associated blame that follows

In a more modern IT environment where a DevOps culture is already in place, common
concerns include:

•	Keeping communications flowing freely between developers and operations

•	Increasing the number of developers on a project, while ensuring accurate version control

•	Automating tasks

•	Identifying software infrastructure load issues to improve applications

•	Increasing customer satisfaction

Business white paper Page 6

The DevOps cycle

Business white paper Page 7

OperateReleaseBuild

Continuous assessment

Continuous assessment

Monitor

Continuous
operations

Continuous
integration
and testing

Continuous
delivery and
deployment

Development Operations

Figure 1: Model of a mature DevOps cycle

Continuous integration is a development practice that requires developers to integrate code into a shared repository several times a day. Each check in is then verified by an
automated build, allowing teams to detect problems early in the cycle. Continuous testing is the practice of automating and integrating unit, functional, and non-functional
(performance, security, etc.) tests into the software delivery chain, and automatically executing those tests against each build of the code base. Specific tests and test conditions
can be prioritized to ensure the most relevant test cases are given priority, or the entire test suite can be executed with each build. Continuous testing can be utilized as a natural
extension of test-driven development practices.

Continuous integration and testing

Continuous delivery is a discipline where your goal is to build software so it can be released to production at any time, and it is always production-ready. You achieve continuous
delivery by automating the delivery flow from development to production. Key elements of continuous delivery include standardizing infrastructure configuration, and managing
configuration details by following the same discipline applied to managing source code. Other elements include automating the delivery of the software completed by the
development team to specific environments, and configuring the infrastructure so that automated tests can detect problems. The changes (executables and configurations) can
be pushed into increasingly production-like environments to ensure the system will work in production. Continuous deployment is the rare practice of automatically releasing and
installing every good code build to production and end users. Continuous deployment is a unique and extreme form of continuous delivery, where every change that passes the
automated tests is automatically deployed to production.

Continuous delivery and deployment

Managing software and hardware changes in a way that is non-disruptive to end users. Processes such as patching and compliance fall under this function. Even though software
and servers can be taken offline during planned maintenance, continuous operations enable customers to be serviced by the previous version of the application until the new
version has been successfully tested and deployed.

Continuous operations

Continuously evaluating an application, based on three types of feedback:

•	 Feedback loops—Continuously monitoring the availability, health, and performance of the application, as well as capturing the user experience throughout the lifecycle
(i.e., development, quality assurance, staging, and production) and feeding it back to the appropriate teams. Doing so enables continuous optimization and fine-tuning of the
application and end-user experience.

•	 Planning prioritization—As the planning team receives feedback, they can continuously assess and prioritize new features, functions, and defect fixing based on business needs
and end-user demands.

•	 Portfolio investment—As the planning team receives feedback, they can continuously assess and prioritize investments based on business drivers.

Continuous assessment

Within a typical IT organization, the scope
of DevOps spans four functional areas.

1. Continuous integration and testing

2. Continuous delivery and deployment

3. Continuous operations

4. Continuous assessment

Velocity and speed of
delivery will increase

The overarching objective is to be responsive to the business demand for
new features and functionality. A DevOps team will organize, align, and
automate to streamline delivery.

Quality and stability will
improve

Standardization and automation reduce the opportunity for manual errors
to be injected into application delivery, and the gauntlet of automated
testing combine to increase the quality of the final product.

Efficiency and capacity
will increase

The combination of changes that DevOps introduces eliminates waste and
rework, enabling the same size team to complete more work.

Business white paper Page 8

Each functional area applies specific tools, skills, and metrics for success. Gaps between these
functional areas often exist where most of the friction, latency, and bottlenecks occur. To close
these gaps, much of the DevOps effort focuses on collaboration, data capture, data sharing,
and automation, coupled with applying a holistic view and a shared set of metrics across
the entire system. Organizations that adopt DevOps principles work with developers and
operations teams to determine the needs of the business as a whole, and then use tools that
simplify, synchronize, and automate the current infrastructure and services housed on that
infrastructure. Let’s take a closer look at these four crucial areas.

Expected outcomes from DevOps

Typically, DevOps will enable three key changes in an organization:

When you think about the desired outcomes of DevOps, consider the goals of a traditional
manufacturing enterprise. In such an environment, you can see the entire supply chain—from
raw materials and assembly to final end-customer delivery. In fact, as you walk around a
manufacturing plant, you can see every step in the process, with each step handing off material
and task from one station to the next. During this first-hand experience, you can discover
opportunities for driving out waste, friction, and mistakes that lead to rising costs, unnecessary
delays, and poor quality. Enter Lean manufacturing, Kaizen, and Six Sigma—targeted
methodologies for creating highly efficient production environments.

In a digital enterprise, where the product is based in software or data, the development process
is not immediately as transparent as it is in manufacturing. The goal of DevOps is to clear
away barriers to success, and to do for the digital enterprise what Lean manufacturing and
Kaizen did for traditional manufacturing: eliminate waste, friction, and mistakes to improve the
agility, speed, efficiency, and quality of the output, and ultimately enhance the satisfaction,
productivity, and experience of the end user.

Today, most IT departments focus primarily on availability, costs, project status, utilization,
power, or space consumption, and application performance. In the traditional IT department,
the Ops team focuses on the efficient operation of the business systems, where high availability
and minimal disruptions are rewarded. However, the Apps team is rewarded for delivering more
projects on time and on budget. In simple terms, the Ops team and the Apps team often have
opposing goals and objectives.

In a DevOps world, one combined team shares goals and accountability to deliver whatever the
business needs. Rapid and frequent changes, stability, and availability are all common goals of
the DevOps team. They share responsibility for support as much as they share responsibility for
speedy delivery.

Setting up for success
To get started with DevOps, many organizations apply the following approach and framework:

•	Continuously import new concepts including tests, experiments, and implementation of new
tools or processes

•	Get everyone on the same page by:

–– Seeing the entire system through value-stream mapping, document the end-to-end system,
and understand the steps, players, and goals

–– Seeing the flow in terms of timeline analysis (identify the bottlenecks) and waste analysis
(identify the errors, non-standards, and waste)

•	Identify organizational behaviors to improve feedback loops and the data capture and sharing
processes that are in place (or need to be)

•	Compare projects/experiments against the baseline, look for continuous improvement
opportunities

Dispelling common myths

Even though many myths are rooted in truth, the common myths about DevOps are most
often rooted in misunderstanding or misinformation. Let’s take a few minutes to set the record
straight about DevOps.

Business white paper Page 9

The roles of developer, operations, and DevOps are blending into one.
Actually, these are three distinct areas of work. Developers write code. Operations teams manage the infrastructure
that houses the code. DevOps helps optimize the processes and infrastructure for application effectiveness.
The number of roles might change over time and be more enabled by software, but all these key skills and
expertise will continue to be required.

Operations teams are unnecessary with DevOps because everything will move to the cloud.
The goal of DevOps is not to move primarily to the cloud, but to a simpler, standardized infrastructure that
can be more easily monitored for problems, deliver application updates more often, and identify system
optimization opportunities.

When transforming to a DevOps culture, the only consideration is what new tools are needed.
Although introducing a DevOps culture will require new tools, research conducted by 451 Research indicates there
are other important factors as well, such as the ones shown in figure 2.6

DevOps cannot be used in a large enterprise.
The automation lifecycle has different needs at different stages. As such, automation can be incorporated in an
enterprise, regardless of the maturity of the IT system in use.

We need to hire DevOps roles.
DevOps is not a role; it is a way of doing things. A formal DevOps department is not required to implement a
DevOps culture, but you need to adopt the culture to become more agile.

DevOps is a new name for something previously done in IT.
In the past, there was not a large agile presence, and there were no tools to help simplify the development,
implementation, and automation of applications. DevOps was created to address the increasing need for speed to
meet customer demands and reduce the growing complexity of IT systems.

DevOps gives developers the opportunity to do unlimited development.
The key to DevOps is increasing the speed of development and the number of developers working on a project
at the same time. Development must be based on customer needs and improvement suggestions gathered from
infrastructure data monitoring.

Developers will now understand infrastructure, and operations will now understand coding.
This is not the goal of DevOps. DevOps is meant to increase communication and collaboration between the teams
and make the overall process more agile, while enabling each function to excel within their area of expertise.

DevOps requires you to use certain tools.
There are many DevOps tools, and not all tools are used all the time. Tools should be chosen based on business
needs, which will vary for each situation.

6 �Source: 451 Research (Analyst) white paper—IT
Ops Can Thrive in a DevOps World, August 2015

1. Version control Tool that versions all application code, infrastructure configuration changes, and
Big Data database changes, enabling a single version of the truth for the entire
IT system. Different version control apps work better than others for different
developer platforms.

2. Build and test Tools that automate common developer tasks including creating executables,
running tests, and compiling source code.

3. �Configuration
management

Tools that track and control changes to the software code base. These tools enable
multiple developers to work on the same code, while avoiding version control issues
and continuously integrating code.

4. �Application
deployment

Tools that enable the automation or continuous delivery and deployment of
software releases, enabling continuous service delivery.

5. Monitoring Tools that enable systems engineers to proactively fix problems. These tools either
continuously assess and monitor application performance and remediate any
performance issues, or they provide visibility into infrastructure capacity, memory,
and CPU consumption.

Tools in your toolbox

The DevOps movement was a catalyst for creating new tools that could enable automation
across all aspects of development, production, and operation, while also solving other core goals
unique to DevOps. Currently more that 80 percent of software development organizations rely
on automated tools for IT management and deployment.7

Five primary types of tools support DevOps, and each tool in each category has its own
specialty. You should choose tools based on your specific needs.

Business white paper Page 10

Sourcing new development tools 72%

68%

51%

27%Sourcing new release management

Providing additional internal staffing skills

Sourcing new infrastructure management
like private clouds or PaaS

Figure 2: Factors that influence DevOps implementation

7 �“Predicts 2010: Agile and Cloud Impact
Application Development Directions,” Gartner

Source: 451 Research (Analyst) white paper—IT Ops Can Thrive in a DevOps World, August 2015

Hewlett Packard Enterprise and DevOps

With more than 75 years of experience in the technology industry, Hewlett Packard Enterprise
grounds every customer conversation in innovative products and services. Customers around
the world trust Hewlett Packard Enterprise to help transform their infrastructure from one that
simply keeps the lights on, to one that creates competitive advantage today and prepares for
tomorrow.

Wherever you are in your DevOps journey, you can find a Hewlett Packard Enterprise
solution that fits your needs. If you are just beginning your journey, you can attend an HPE
Transformation Workshop to develop your roadmap. If you already have a roadmap, you can
choose HPE Software Solutions that enable the automation you need for DevOps, as well as the
simplified infrastructure that supports scalability.

Hewlett Packard Enterprise IT has been going through its own DevOps cultural transformation.
It was based upon several guiding principles that are shared below. Follow the evolution of our
IT culture as well. Here is the first piece.

Business white paper Page 11

Optimized

We optimize the system as a whole, not the silos.

APIs

Hewlett Packard Enterprise IT resources are controlled
by APIs and we take advantage of the cloud, including
IaaS and PaaS—everything is code.

Responsibility Pipelines

Any change (not just application code) goes through
the continuous delivery pipeline—application and
infrastructure (compute, storage, DB, network, OS).

With great power comes great responsibility:
the continuous delivery pipeline has root access
and the person who introduces a change is on call.

Teams

Integrated, empowered, self-organizing teams.

Approach

We have a scientific approach: we formulate hypothesis
and validate them with real life experiences and data.

Trust

We value trust and responsibility.

Figure 3: Hewlett Packard Enterprise IT DevOps Manifesto

http://www8.hp.com/us/en/software-solutions/asset/software-asset-viewer.html?asset=2002072&module=1771427&docname=4AA5-8744ENW&page=1771432

Glossary

Agile development: Promotes adaptive planning, evolutionary development, early delivery,
and continuous improvement, as well as encourages rapid and flexible response to change.
Agile development incorporates iteration and continuous feedback to successively refine and
deliver a software system. It involves continuous planning, testing, integration, and other forms
of continuous evolution of both the project and software. Forms of Agile development include
Agile Scrum, Lean development, and Extreme Programming.

Agile Scrum: With Scrum methodology, the product owner works closely with the team to
identify and prioritize system functionality in form of a product backlog. The product backlog
consists of features, bug fixes, and non-functional requirements—whatever needs to be done
to successfully deliver a working software system. With priorities driven by the Product Owner,
cross-functional teams estimate and commit to delivering potentially shippable increments of
software during successive sprints, typically lasting 30 days. Once a Sprint’s Product Backlog is
committed, no additional functionality can be added to the sprint except by the team. Once a
sprint has been delivered, the product backlog is analyzed and reprioritized, if necessary, and
the next set of functionality is selected for the next Sprint.

Canary release: A technique for reducing the risk of introducing a new software version in
production by slowly rolling out the change to a small subset of users before rolling it out to the
entire infrastructure and making it generally available. (Source: Martin Fowler)

Canary testing: In software testing, a canary or canary test is a push of programming code
changes to a small number of end users who have not volunteered to test anything. The
goal of a canary test is to make sure code changes are transparent and work in a real-world
environment. (Source: WhatIs.com)

Continuous assessment: The function of continuously assessing the application through:

1.	Feedback loops: Continuously monitoring the availability, health, and performance of
the application, while also capturing the end-user experience throughout the lifecycle
(development, quality assurance, staging, and production), and feeding the information to
the appropriate teams to continuously optimize and fine-tune the application and end-user
experience.

2.	Planning prioritization: As feedback returns to the planning team, continuously assessing
and prioritizing new features, functions, and defect fixing based on business needs; doing so
ensures that application changes are prioritized and delivered to end users.

3.	Portfolio investment: As feedback returns to the planning team, continuously assessing and
prioritizing investments based on business drivers (includes application portfolio management).

Business white paper Page 12

http://martinfowler.com/bliki/CanaryRelease.html
http://whatis.techtarget.com/definition/canary-canary-testing

Continuous delivery: A software development discipline where software is built so it can be
released to production at any time. You achieve continuous delivery by continuously integrating
the software created by the development team, building executables, and running automated
tests on those executables to detect problems. You push the executables into increasingly
production-like environments to ensure the software will work in production. Continuous
delivery is sometimes confused with continuous deployment, but they are actually two distinct
practices. (Source: Martin Fowler, Continuous Delivery)

Continuous deployment: The practice of automatically releasing and installing every good
code build to production and end users. Continuous deployment is the next step in the
continuous delivery process. (Source: Jez Humble, Continuous Delivery)

Continuous integration: A development practice that requires developers to integrate code
into a shared repository several times a day. An automated build verifies each check-in and
allows teams to detect problems early. (Sources: thoughtworks.com/continuous-integration,
and wikiwand.com/en/Continuous_integration)

Continuous operations: Managing software and hardware changes in a way that is
non-disruptive to end users. Processes such as patching and compliance fall under this
function. Even though software and servers can be taken offline during planned maintenance,
continuous operations enable customers to be serviced by the previous version of the
application until the new version has been successfully tested and deployed. Gartner defines
continuous operations as, “those characteristics of a data-processing system that reduce or
eliminate the need for planned downtime, such as scheduled maintenance. One element of
24-hours-a-day, seven-days-a-week operation.”

Continuous testing: The practice of automating and integrating unit, functional, and
non-functional (performance, security, etc.) tests into the software delivery chain and
automatically executing those tests against each build of the code base. Specific tests and test
conditions can be prioritized to ensure the most relevant test cases are given priority, or the
entire test suite can be executed with each build. Continuous testing can be utilized as a natural
extension of test-driven development practices.

Deployment pipeline: Orchestrating a build through a series of quality gates, with automated
or manual approval processes at each stage, culminating with deployment into production.
Also referred to as CD pipeline, delivery pipeline, build pipeline, and deployment production line.
(Source: Jenkins: The Definitive Guide, by John Smart)

DevOps: Typically refers to an emerging professional movement that advocates a collaborative
working relationship between development and IT operations teams, resulting in the rapid flow
of planned work (i.e., high deploy rates), while simultaneously increasing the reliability, stability,
resilience, and security of the production environment. (Source: Gene Kim)

Business white paper Page 13

http://martinfowler.com/bliki/ContinuousDelivery.html
http://continuousdelivery.com/
http://www.thoughtworks.com/continuous-integration
http://www.wikiwand.com/en/Continuous_integration
http://www.gartner.com/it-glossary/continuous-operations
http://www.gartner.com/it-glossary/continuous-operations
http://www.realgenekim.me/devops-cookbook/

Gemba Walk: The action of going to see the actual process, understand the work, ask
questions, and learn. Gemba Walk is one of the fundamental components of the Lean
management philosophy. (Source: Gemba Walk)

Kanban: Scheduling system for lean and just-in-time (JIT) production. Kanban controls the
logistical chain from a production point of view, but it is not an inventory control system.
Kanban was developed by Taiichi Ohno (Toyota) to improve and maintain a high level of
production. (Source: Toyota)

Kaizen: Japanese for “good change.” Kaizen has been applied in health care, psychotherapy,
life coaching, government, banking, and other industries. When used in the business sense and
applied to the workplace, Kaizen refers to activities that continually improve all functions, and
Kaizen involves all employees from the CEO to the assembly line workers. Kaizen also applies to
processes, such as purchasing and logistics that cross organizational boundaries into the supply
chain. By improving standardized activities and processes, Kaizen aims to eliminate waste (see
Lean manufacturing). (Source: Kaizen.com)

Latency: A measure of the time delay experienced by a system.

Lead time: The latency (delay) between the initiation and execution of a process, such as
the lead time measure of the time delay experienced by a system, or the time between the
placement of an order and delivery of the item from the manufacturer. For example, the lead
time on a new car can be anywhere from two weeks to six months. Lead time reduction is an
important part of Lean Manufacturing. (Source: Investopedia)

Lean development: An iterative Agile methodology that focuses a team on delivering value to
the customer and on the efficiency of the value stream (i.e., the mechanisms that deliver that
value). Lean methodology eliminates waste through such practices as selecting only the truly
valuable features for a system, prioritizing the features elected, and delivering the features in
small batches. Lean development emphasizes the speed and efficiency of the development
workflow, and relies on rapid and reliable feedback between programmers and customers.

Queue time: The time between sub-processes where an item is moved around or waits
for someone to work on it. Also known as “Waiting & Transportation Time” or “Inventory/
Transportation Time.” (Source: Velaction)

Value-stream mapping: A Lean management method for analyzing the current state of a
product or server, and then designing a series of events that move the product or service from
its beginning through to the customer. This methodology can be applied to practically any
value chain. (Source: iSixSigma)

Business white paper Page 14

http://www.gembawalk.com/the-gemba-walk/
http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/just-in-time.html
http://www.kaizen.com/about-us/definition-of-kaizen.html
http://www.investopedia.com/terms/l/leadtime.asp
http://www.velaction.com/queue-time/
http://www.isixsigma.com/dictionary/value-stream-mapping/

Wait time: Waiting is one of the seven wastes that most people readily recognize. Eliminating
time spent waiting has been a focus of manufacturing improvement activities since the
beginning of the industrial age. The motivation to eliminate wait time has been the driving force
behind many of the other wastes—defects, overproduction, transportation, inventory, motion,
and processing.

For example, to eliminate any chance of an employee waiting, large queues of work-in-progress
(WIP) would be accumulated throughout the production process. When people think of
wait time, most picture a worker in front of a machine waiting for material to arrive or for
the machine to cycle. This is one of the common types of wait time, but there are more
subtle instances that are every bit as costly. Wait times are a major challenge in supply chain
operations, as companies often wait days or weeks to replenish raw materials. Wait times
also occur in many administrative functions, including the delays in the flow of information or
approvals from one department to another, or the delay of waiting for an open position to be
filled. (Source: Lean Genie)

WIP: Work-in-progress (or work in process) is the amount of unfinished product in development
and test. Typically, the goal is to reduce work in progress, as it is investment that is not yet
providing a return and requires continued investment until it becomes productive.

Business white paper Page 15

http://www.systems2win.com/c/time_definitions.htm

Sign up for updates

Rate this document
© Copyright 2015 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice.
The only warranties for HPE products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HPE shall not be liable for technical or editorial
errors or omissions contained herein.

Google is a registered trademark of Google Inc. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.

4AA4-3696ENW, November 2015, Rev. 1

Business white paper

Open source tools for automation, configuration
management, and continuous integration

Jenkins: An open source continuous integration server. Jenkins features numerous plug-ins
that support project building and testing. Jenkins monitors a version control system by
maintaining a build system, monitoring it for changes, and providing appropriate notifications
of those changes. Typically, Jenkins is paired with a build tool, such as Maven.

Chef: An open source configuration management tool by Opscode that manages server
configuration and deploys applications. Chef helps to automate configuration, deployment, and
scaling of servers and applications, regardless of whether the server or application is in the
cloud, onsite, or in a hybrid environment. Chef runs on the Linux® operating system with agents
to manage other platforms. Chef uses a Ruby-like scripting language called recipes. In addition
to the open source versions of Chef, a commercial offering is also available. Chef is often used as
a continuous delivery tool.

Puppet: An open source configuration management tool by Puppet Labs, the Puppet
automation platform manages server configuration and deployment of applications. Following
the client or server model, Puppet helps to automate, deploy, and scale up applications in the
cloud or on site. Puppet runs on the Linux operating system with agents to manage other
platforms. Puppet uses a proprietary scripting language based on declarative models known
as manifests. In addition to the open source versions of Puppet, a commercial offering is also
available. Puppet is often used as a continuous delivery tool.

Docker: An application or micro-service container developed by Docker, Inc., Docker automates
application deployment inside software containers. This tool helps package an application and
its dependencies as a virtual container. Docker is written in the Go programming language
and integrates with CODAR. In much the same way that VMware® virtualizes hardware,
Docker virtualizes the underlying services provided by the operating system. Where VMware
can support multiple operating systems on a physical server, Docker can support multiple
applications or services on an operating system, with no interference or conflicts.

Learn more at
hp.com/go/devops

Business white paper

Resources
To learn more about DevOps, we
recommend reading the following
publications:

•	 “The Phoenix Project,” by Gene Kim

•	 “The Goal,” by Eliyaho M Goldratt

•	 “Continuous Delivery,” by Jez Humboldt

•	 “The Machine that Changed the World,”
by James Womack

If you prefer online reading, you can refer
to the following blogs, communities, and
podcasts:

•	 continuousdelivery.com

•	 bmc.com/blogs

•	 devops.com

•	 arresteddevops.com

•	 devopscafe.org

•	 community.dev.hp.com

http://www.hp.com/go/getupdated
https://hpresearch.az1.qualtrics.com/SE/?SID=SV_6EuQKOr2Ku1CUzH&Pubnumber=4AA4-3696ENW
http://www.facebook.com/sharer.php?u=http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-3696ENW
http://www.linkedin.com/shareArticle?mini=true&ro=true&url=http%3A%2F%2Fh20195%2Ewww2%2Ehp%2Ecom%2FV2%2FGetDocument%2Easpx%3Fdocname%3D4AA4-3696ENW&title=Getting+grounded+with+DevOps+&armin=armin
http://twitter.com/home/?status=Getting%20grounded%20with%20DevOps+%40+http%3A%2F%2Fh20195.www2.hp.com%2FV2%2FGetDocument.aspx?docname=4AA4-3696ENW
http://www.hp.com/go/devops
http://continuousdelivery.com/
http://www.bmc.com/blogs
http://devops.com/
http://www.arresteddevops.com/
http://devopscafe.org/
https://community.dev.hp.com/

	Why reading this guide is time well spent
	Getting grounded—what is DevOps?
	The story of DevOps. How it began.
	Who’s taking advantage of DevOps?
	Common misconceptions about the DevOps community
	The DevOps cycle
	Expected outcomes from DevOps
	Dispelling common myths
	Tools in your toolbox
	Hewlett Packard Enterprise and DevOps
	Glossary
	Open source tools for automation, configuration management, and continuous integration

